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Abstract

A regression procedure is developed to link simultaneously a very large number of item response

theory (IRT) parameter estimates obtained from a large number of test forms, where each form

has been separately calibrated and where forms can be linked on a pairwise basis by means of

common items. An application is made to forms in which a two-parameter logistic model is

applied to dichotomous items and a general partial credit model is applied to polytomous items.
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Linking test forms by use of item response theory (IRT) is a familiar activity when one

reference form is equated to one base form (Hambleton, Swaminathan, & Rogers, 1991, ch. 9). In

practice, testing programs often link one test form to another in circumstances in which multiple

test forms are involved. In typical cases, new forms are equated based on one or more old

forms, and these old forms have in turn been linked to earlier forms. If modifications in linking

procedures are required for any reason, then their implementation can be an arduous task. In this

report, an approach based on linear models is considered that permits simultaneous linking of a

large number of forms without the need to produce a long sequence in which one form is linked to

one or more previously used forms. The suggested approach is a generalization of the log-mean

mean procedure (Mislevy & Bock, 1990) briefly described in Kolen and Brennan (2004).

Section 1 describes the model used in the analysis of IRT true-score equating. Section 2

describes the required regression analysis. Section 3 provides some concluding remarks.

1 The Model

To describe the general problem under study, consider the following situation. A given test

has administrations 1 to T , where T > 1. In these T administrations, a finite and nonempty set

J of v items is used, but not all examinees receive all items. Associated with Item j in J are

response scores 0 to rj − 1, where rj ≥ 2 is an integer. Associated with an examinee is a real

proficiency variable θ. If an examinee has proficiency θ, then the probability Pj(k|θ) > 0 that the

examinee receives score k, 0 ≤ k ≤ rj − 1, on item j satisfies

log[Pj(k|θ)/Pj(k − 1|θ)] = Daj(θ − bj + djk),

where aj is a real and normally positive, bj and djk are real, and
∑rj−1

k=1 djk = 0 (Muraki, 1997).

Thus one has a generalized partial credit model that reduces to a two-parameter logistic model if

item j has rj = 2 categories. The item discrimination aj , the item difficulty bj , and the location

parameters djk are unknown, except that djk obviously is 0 in the dichotomous case of rj = 2.

The multiplier D is a known constant. It may be 1, 1.7, or 1.702. The values 1.7 and 1.702 are

employed so that parameters from IRT models based on the logistic distribution function will be

similar in value to IRT parameters based on the normal distribution function (Lord & Novick,

1968, p. 400). At administration t, 1 ≤ t ≤ T , examinee i, 1 ≤ i ≤ Nt, is administered a nonempty

subset Jit of the items in J . The response score for item j is then Xijt. It is assumed that,
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conditional on the proficiency θi of examinee i, the Xijt, j in Jit, are independent. In addition, at

administration t, the examinee population is assumed to have a normal proficiency distribution

N(Bt, A
2
t ) with mean Bt and standard deviation At. To identify parameters, let A1 = 1 and

B1 = 0, so that the proficiency distribution for Administration 1 is a standard normal distribution.

This convention is reasonable if the form used in Administration 1 is regarded as the base form.

Marginal maximum-likelihood estimation may be employed to determine the parameters At,

Bt, aj , bj , and djk; however, this approach is challenging with conventional software if J includes

thousands of items. A less computationally demanding approach involves separate calibrations for

each form. For each Administration t, let the set Jt include each Item j such that the number Njt

of examinees i with j in Jit exceeds some minimum threshold mj > 0. To ensure that parameters

can be estimated, assume that the number vt of elements of Jt is at least 3, and assume that each

Item j in the set J is in Jt for some Administration t. A scaled version of the parameters aj , bj ,

and djk for each Item j in the set Jt of items associated with Administration t may be obtained

with conventional software such as Parscale for estimation by maximum marginal likelihood. In

conventional application of such software, the marginal distribution of the proficiency distribution

is a standard normal distribution. Such a marginal distribution can be achieved by use of a linear

transformation. The proficiency θit of examinee i in administration t can be converted to the

scaled proficiency θ′it = A′
tθit + B′

t = (θit −Bt)/At, where A′
t = 1/At and B′

t = −Bt/At, so that θ′it

has a standard normal distribution. One may then apply a conventional analysis to the data from

Administration t. In this analysis, the conditional probability P ′
j(k|θ′) that Xijt = k given θ′it = θ′

is Pj(k|Atθ
′ + Bt), so that

log[P ′
j(k|θ′)/P ′

j(k − 1|θ′)] = Daj(Atθ
′ + Bt − bj + djk)

= Da′jt(θ
′ − b′jt + d′jkt),

where

a′jt = Ataj = (A′
t)
−1aj ,

b′jt = (bj −Bt)/At = A′
tbj + B′

t,

and

d′jkt = djk/At = A′
tdjk.
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Conventional analysis with programs such as Parscale provides maximum marginal-likelihood

estimates â′jt, b̂′jt, and d̂′jkt for a′jt, b′jt, and d′jkt, respectively, for each Item j in Jt for each

Administration t ≥ 1. In typical linking attempts, for each Administration t > 1 and each Item j

in Jt, a chained approach is used to estimate the parameters At, Bt, A′
t, B′

t, aj , bj , and djk. This

approach requires availability of sequences of common items. Let Kt be the set of Items j common

to both Administration t and to some Administration s < t, so that j is in both Jt and Js. The

chained approach can only be used to link all Administrations t for 1 ≤ t ≤ T if Kt is nonempty

for 2 ≤ t ≤ T . In other words, to each Administration t must correspond an Administration s < t

such that these two administrations share common items.

2 Regression Analysis

Even if, for some Administration t > 1, the set Kt of common items is empty, it still may be

possible to estimate all required parameters by use of a three-stage regression analysis. In the

first stage, the item discrimination aj is estimated for each Item j in J . In the second stage, the

item difficulty bj is estimated for each Item j. In the third stage, the location parameter djk is

estimated for each score k, 0 ≤ k ≤ rj − 1, for each Item j.

In the first stage, assume, as is normally the case, that each estimated item discrimination

â′jt, j in Jt, is positive. The equations

log a′jt = log At + log aj

lead to the regression model in which log Ât and log âj are selected to minimize

T∑
t=1

∑
j∈Jt

[log â′jt − log Ât − log âj ]2

subject to the constraint that Â1 = 1. The minimization problem is commonly encountered

in the analysis of variance when an incomplete two-way layout is considered and an additive

model is employed in which the variables represented by rows and columns are treated as nominal

variables. The T administrations correspond to rows and the v items in J correspond to columns.

The layout is incomplete because not all combinations of administrations and items are observed.

Efficient computation of least-squares estimates requires some care due to the very large

number of items to be considered. For each Item j, let Uj be the set of Administrations t such

that j is in Jt, and let uj be the number of elements of Uj . For Administrations t and t′, let Htt′
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be the set of Items j such that j is in both Jt and Jt′ (j is a common item for Administrations t

and t′), and let Gt be the set of positive integer t′ ≤ T such that Htt′ is not empty, so that

Administrations t and t′ share common items. Solution of the normal equations shows that

log âj = u−1
j

∑
t∈Uj

[log â′jt − log Ât] (1)

and

log Ât − v−1
t

∑
t′∈Gt

log Ât′
∑

j∈Htt′

u−1
j = v−1

t

∑
j∈Jt

log â′jt − u−1
j

∑
t′∈Uj

log a′jt′

 (2)

(Scheffé, 1959, p. 114). Clearly Â′
t = 1/Ât.

In the second stage, bj and Bt are estimated by use of the equation

b′jtAt = −Bt + bj .

The estimates B̂t and b̂j are selected to minimize

T∑
t=1

∑
j∈Jt

[b̂′jtÂt + B̂t − b̂j ]2

subject to the constraint B̂1 = 0. Again the regression analysis corresponds to an additive model

for an incomplete two-way layout. Thus

b̂j = u−1
j

∑
t∈Uj

[b̂′jtÂt + B̂t] (3)

and

B̂t − v−1
t

∑
t′∈T

B̂t′
∑

j∈Htt′

u−1
j = −v−1

t

∑
j∈Jt

b̂′jtÂt − u−1
j

∑
t′∈Uj

b̂′jt′Ât′

 . (4)

It then follows that B̂′
t = −B̂t/Ât.

In the third stage, the d̂jk are selected to minimize

T∑
t=1

∑
j∈Jt

[d̂′jktÂt − d̂jk]2 =
∑
j∈J

∑
t∈Uj

[d̂′jktÂt − d̂jk]2.

In this case, one can proceed as in the analysis of variance for a one-way layout with independent

variable corresponding to items and with replications corresponding to administrations in which

the item appears. Thus

d̂jk = u−1
j

∑
t∈Uj

d̂′jktÂt. (5)
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If T = 2, then the regressions reduce to log-mean mean equating (Mislevy & Bock, 1990).

The set K2 = H12 consist of the common items j in both J1 and J2. Then Â2 is the geometric

mean of the ratios â′j2/â′j1 for j in K2. In addition, B̂2 is the arithmetic mean of b̂′j1 − b̂′j2Â2 for j

in K12. If j is in J1 but not in J2, so that Item j is only encountered at Administration 1, then

âj = â′j1, b̂j = b̂′j1, and d̂jk = d̂′jk1. If j is in J2 but not in J1, so that Item j is only encountered at

Administration 2, then

âj = log â′j2 − log Â2,

b̂j = b̂′j2Â2 + B̂2,

and

d̂jk = d̂′jk2Â2.

If j is in K2, so that Item j is a common item, then

log âj =
log â′j1 + log â′j2 − log Â2

2
,

b̂j =
b̂′j1 + Â2b̂

′
j2 + B̂2

2
,

and

d̂jk =
d̂′jk1 + d̂′jk2Â2

2

(Kolen & Brennan, 2004, p. 162).

The regression approach successfully defines estimates if, and only if, the set G of pairs

{(j, t) : j ∈ Jt, 1 ≤ t ≤ T} satisfy the inseparability requirement (Goodman, 1968) used in the case

of two-way contingency tables with omitted cells. The inseparability requirement is essentially

the requirement that all items can be linked together by use of common items for a sequence of

administrations. Thus for each j and j′ in J must correspond a positive integer w such that, for

Administrations t(z), 1 ≤ z ≤ w, j is in Jt(1), j′ is in Jt(w), and Ht(z)t(z+1) is nonempty if z is a

positive integer less than w. For a simple example, let T = 3, and let J be the set of integers

from 1 to 5. Let J1 = {1, 2, 3}, let J2 = {2, 3, 4}, and let J3 = {3, 4, 5}. Then G is inseparable.

For example, consider j = 1 and j′ = 5. Then for w = 2, t(1) = 1 and t(2) = 3, j is in Jt(1), j′

is in Jt(3), and Ht(1)t(2) = {3} is not empty. On the other hand, let T = 3, let J be the set of

integers from 1 to 7, let J1 = {1, 2, 3}, let J2 = {2, 3, 4}, and let J3 = {5, 6, 7}. The inseparability

condition fails, for H13 and H23 are empty. Thus j in J1 or J2 cannot be linked to j′ in J3.
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In practice, the problem of minimization of the sums of squares requires some care when the

number of items in J is very large. It is desirable that a computer routine apply (2) and (4) to

solve T − 1 simultaneous equations rather than use a completely general approach with T + v − 1

simultaneous equations to solve, T − 1 equations for the T − 1 administrations other than the

initial administration and v equations for the v items in J . In SAS, the GLM procedure may be

applied with the ABSORB option for the variable that specifies administrations as long as the

data are sorted by order of administration. Elementary procedures are then needed to apply (1),

(3), and (5), for GLM does not obtain log âj , b̂j , and d̂jk if the ABSORB option is used.

A change in the definition of the base form has no real impact on results. Let the base form

be Form s for some positive integer s ≤ T . The proficiency parameter θit is converted to the

proficiency parameter θ∗it = (θit − Bs)/As, the item difficulty bj is converted to (bj − Bs)/As, the

item discrimination aj is converted to a∗j = Asaj , and the location djk becomes d∗jk = djk/As.

Thus

a∗j (θ
∗
it − b∗j + d∗jk) = aj(θit − bj + djk).

The mean of θ∗it is B∗
t = (Bt −Bs)/As, and the standard deviation of θ∗it is A∗

t = At/As. Consider

minimization of
T∑

t=1

∑
j∈Jt

[log â′jt − log Â∗
t − log â∗j ]

2

subject to the constraint that Â∗
s = 1, minimization of

T∑
t=1

∑
j∈Jt

[b̂′jtÂ
∗
t + B̂∗

t − b̂∗j ]
2

subject to the constraint B̂∗
s = 0, and minimization of

T∑
t=1

∑
j∈Jt

[d̂′jktÂ
∗
t − d̂∗jk]

2.

Then Â∗
t = Ât/Âs, â∗j = Âsâj , B̂∗

t = (B̂t − B̂s)/Âs, b̂∗j = (b̂j − B̂s)/Âs, and d̂∗jk = d̂jk/Âs.

3 Conclusion

The approach proposed in this report is readily applied even when the linkages between

forms are quite complex. Common software programs such as Parscale and SAS may be used

in calculations. If outliers are a concern, then standard methods of residual analysis may be
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employed to identify unusually large residuals from each required regression analysis (Draper &

Smith, 1998). If needed, it is possible to remove selected items from the equating computations.

Because the estimated difficulty b̂′jt is relatively unstable if the estimated discrimination a′jt is

unusually small, it may also be desirable to remove items from equating if â′jt is unusually small,

say less than 0.2.

The proposed approach does satisfy the basic requirement that all parameters are estimated

with increasing accuracy if sample sizes become large at each administration and if all model

assumptions are satisfied. The approach does not exploit information concerning accuracy of

parameter estimates or correlations of parameter estimates, so it is not fully efficient in a statistical

sense. More efficient approaches require more computational resources than are typically available

in operational programs.

Once the estimates Ât, B̂t, âj , b̂j , and d̂jk are available, a variety of methods can be employed

to equate scores from different administrations (Kolen & Brennan, 2004, ch. 6). In the case of

IRT true-score equating, let scores be provided for Administration t based on the subset Ft of

items, where Ft is included in Jt. Thus Examinee i has a raw score

Sit =
∑
j∈Ft

Xijt

with range from 0 to st =
∑

j∈Ft
(rj − 1). The test characteristic curve for Administration t is

estimated to be

T̂t(θ) =
∑
j∈Gt

rj∑
k=1

(k − 1)P̂jk(θ),

where

log[P̂j(k|θ)/P̂j(k − 1|θ)] = Dâj(θ − b̂j + d̂jk).

The raw score of 0 for Administration t is converted to a raw score of 0 for Administration 1, while

the raw score of st for Administration t is converted to a raw score of s1 for Administration 1. For

0 < s < st, a raw score of s for Administration t is converted to a raw score of T̂1(T̂−1
t (s)) for

Administration 1.

The approach applied to the two-parameter logistic model and general partial credit model in

this report applies with little change if other models are used. For example, it is a simple matter

to modify analysis for use with a three-parameter logistic model or for a two-parameter normal

ogive model. Note that in the case of a three-parameter logistic model, an added stage would
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be employed in which the guessing parameter for an Item j would be averaged over the reported

values for all forms in which it appears.
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